

ASTM C 1363 Thermal Performance Test Report

Test Number: 2011-33

Sponsor: North American Insulation Manufacturers Association

Wall Liner System 1/8" Foam Tape R-25

Butlerib® II wall system panels, 1/8" foam tape on outside flange of girt, nominal R-25 fiberglass blanket between girts, WMP-30 vapor retarder.

Test Date: 5/31/2011

Responsible Party: Mark J. Henry **Operator:** Larry Krueger

Witness: Mark Henry

Summary of Results:

Thermal	$0.332 \text{ W/m}^2 \text{ K}$
Transmittance*, U:	$(0.059 \text{ Btu/ hr ft}^2 \text{ F})$
Overall Thermal	$3.0 \text{ m}^2 \text{ K/W}$
Resistance, Ru:	(17.1 hr ft ² F/Btu)

^{*} air-to-air thermal transmittance

Research Center 13500 Botts Road Grandview, M0 64030-2897 Phone 816-968-5700

ASTM C 1363 Thermal Performance Test Report Summary

Prepared For:

North American Insulation Manufacturers Association 44 Canal Center Plaza Suite 310 Alexandria, Virginia 22314

> **Test Number:** 2011-33 **Test Start Date:** 5/31/2011 **Test End Date:** 6/3/2011 **Report Date:** 6/15/2011

Test Information:

Wall Liner System 1/8" Foam Tape R-25

Butlerib® II wall system panels, 1/8" foam tape on outside flange of girt, nominal R-25 fiberglass blanket between girts, WMP-30 vapor retarder.

Test Orientation / Heat Flow Direction:

Vertical Wall / Inside to Outside

Specimen Size:

2.44 m x 3.05 m (8.00 ft x 10.00 ft)

Test Procedure: The Thermal Transmittance (U) and Thermal Resistance (Ru) were determined in general accordance with ASTM C 1363-05, *Standard Test Method for Thermal Performance of Building Materials and Envelope Assemblies by Means of a Hot Box Apparatus*.

ASTM Exceptions, if any:

Summary of Test Setup:

Average Warm Side Ambient Temperature	37.77 deg C (99.99 deg F)
Average Cold Side Ambient Temperature	10.04 deg C (50.07 deg F)
Average Warm Side Air Velocity	0.29 m/s (58.00 fpm)
Average Cold Side Air Velocity	1.30 m/s (256.64 fpm)

Summary of Results:

Thermal Transmittance*, U:	$0.332 \text{ W/m}^2 \text{ K}$
	$(0.059 \text{ Btu/ hr ft}^2 \text{ F})$
Overall Thermal Resistance, Ru:	$3.0 \text{ m}^2 \text{ K/W}$
	$(17.1 \text{ hr ft}^2 \text{ F/Btu})$

^{*} air-to-air thermal transmittance

Test Number: 2011-33 Page 1 of 15

Test Results ID: Standard Results-06/15/2011 10:39

Research Center 13500 Botts Road Grandview, MO 64030-2897 Phone 816-968-5700

Specimen Size: 2.44 m x 3.05 m (8.00 ft x 10.00 ft)

Panel Type: Butlerib® II wall system panels

Insulation: One layer **Framing System:** Zee girts

Specimen Construction: The girts were installed in the test frame. The foam tape was a placed on the outside flange. Sections of Insul-Hold insulation supports were attached to the girts by bending one end over the girt flange lip. The wall panels were installed to the girts in a manner typical of standard installation details. The test frame was rotated to vertical. Pieces of nominal R-25 unfaced fiberglass insulation were cut to length and width. They were placed between the girts, and between the frame and the girts. The insulation butted against the girt webs and the inside of the frame. Double stick tape was placed on the inside face of the inside girt flanges. One end of the vapor retarder was fastened to the inside of the upper side of the test frame. The vapor retarder hung down, was smoothed against the insulation, and was adhered to the double stick tape. The lower end of the vapor retarder was fastened to the inside face of the lower side of the test frame. The 1" banding was installed. It was fastened to each girt. The perimeter of the panels and the side laps were taped to prevent air leakage.

Specimen Conditioning: The assembly was built at the Butler Research Center and remained there until it was tested. The insulation was unrolled and was in environmental conditions for at least 12 hours before being enclosed in the test assembly. The insulation was "fluffed" in a manner similar to the NAHB procedure for quality testing of faced insulation, in order to promote the recovery of the insulation thickness. The average measured thickness of the insulation was 7.89 inches.

Materials Used:

Material Name	Description			
Butlerib Wall Panels	Butlerib® II wall system panels, 26 gauge,			
	Galvalume Plus® finish			
Foam Tape	VentureTape® 9108			
	1/8" x 3" polyethylene foam tape			
	Adhesive coated on two sides			
R-25 Fiberglass Unfaced	Nominal R-25 unfaced fiberglass			
	CertainTeed Commercial Blanket Insulation			
	Measured thermal resistance: 25.19 hr ft ² F/Btu			
Vapor Retarder	Lamtec WMP-30			
	Polypropylene scrim kraft membrane			

Sources for Materials Used: Butler Manufacturing supplied the girts, the wall panels, and fasteners. CertainTeed Corporation supplied the fiberglass insulation.

NAIMA supplied the foam tape.

Lamtec® Corporation supplied the vapor retarder.

Test Number: 2011-33 Page 2 of 15

Test Results ID: Standard Results-06/15/2011 10:39

Research Center 13500 Botts Road Grandview, MO 64030-2897 Phone 816-968-5700

Measured Test Data

Test Ti	mes					
	Test Start Time	5/31/2011 7:28 AM				
	Test End Time	6/3/2011 1:38 PM				
	Time Required to Reach Steady State	59.6 Hours				
	Steady State Start Time	6/2/2011 7:05 PM				
	Steady State End Time	6/3/2011 12:59 AM				
Test In	formation					
	Metered Area	10.48 m ² (112.75 ft ²)				
	Specimen Area	$7.43 \text{ m}^2 (80.00 \text{ ft}^2)$				
	Average Warm Side Ambient Temperature	37.77 deg C (99.99 deg F)				
	Average Cold Side Ambient Temperature	10.04 deg C (50.07 deg F)				
Input		93.98 watts (320.67 Btu/hr)				
	Warm Side Heaters	78.72 watts (268.61 Btu/hr)				
	Warm Side Fans	13.99 watts (47.75 Btu/hr)				
	Warm Side AVT & RH Sensor Power	1.27 watts (4.32 Btu/hr)				
Loss		25.50 watts (87.02 Btu/hr)				
	Surround Panel and Flanking Loss	19.85 watts (67.73 Btu/hr)				
	Side of Test Specimen Frame Adjustment	5.67 watts (19.35 Btu/hr)				
	Meter Wall and Flanking Loss	-0.02 watts (-0.06 Btu/hr)				
	Thermopile Voltage (E)	-0.232 mV				
	Thermopile Null (E_0)	-0.2418 mV				
	Thermopile Slope (m)	-1.8296				
Total I	Heat Flow Through Test Specimen	68.48 watts (233.66 Btu/hr)				

Calculated Thermal Properties	
Specimen Thermal Transmittance (U)	$0.332 \text{ W/m}^2 \text{ K}$
	$(0.059 \text{ Btu/ hr ft}^2 \text{ F})$
Specimen Overall Thermal Resistance (Ru)	$3.0 \text{ m}^2 \text{ K/W}$
	$(17.1 \text{ hr ft}^2 \text{ F/Btu})$

The estimated uncertainty of the results is \pm 5 %

Test Number: 2011-33 Page 3 of 15

Measurements were taken to determine the depth of the insulation. They were taken on the inside from a line at the back of the test frame to the vapor retarder. The test frame is 11-5/8" deep. The flat of the wall panel was flush with the outside of the tests frame. So the measurement subtracted from 11-5/8" is the depth of the insulation from the panel flat. The measurements were taken at 6" increment across the width of the specimen. Vertical locations are measured from the centerline of the inside flange of the girt.

Location		0.5'	1.0'	1.5'	2.0'	2.5'	3.0'	3.5'	4.0'	4.5'	5.0'	5.5'	6.0'	6.5'	7.0'	7.5'
24" above	Meas.	3.19	3.56	3.25	2.94	2.75	3.13	2.88	2.63	2.69	2.75	2.81	2.81	3.00	3.38	3.56
upper girt	Depth	8.44	8.06	8.38	8.69	8.88	8.50	8.75	9.00	8.94	8.88	8.81	8.81	8.63	8.25	8.06
6" above	Meas.	4.00	4.00	3.75	3.56	3.56	3.50	3.25	3.13	3.38	3.50	3.50	3.38	3.25	3.44	3.50
upper girt	Depth	7.63	7.63	7.88	8.06	8.06	8.13	8.38	8.50	8.25	8.13	8.13	8.25	8.38	8.19	8.13
6" below	Meas.	3.75	3.63	3.38	3.44	3.38	3.38	3.56	3.38	3.31	3.38	3.31	3.25	3.31	3.44	3.63
upper girt	Depth	7.88	8.00	8.25	8.19	8.25	8.25	8.06	8.25	8.31	8.25	8.31	8.38	8.31	8.19	8.00
Mid-span	Meas.	3.43	3.08	2.94	3.00	3.00	3.06	3.19	3.25	3.13	3.00	2.94	2.88	2.75	2.88	3.13
	Depth	8.19	8.54	8.69	8.63	8.63	8.56	8.44	8.38	8.50	8.63	8.69	8.75	8.88	8.75	8.50
6" above	Meas.	3.75	3.63	3.63	3.63	3.50	3.50	3.50	3.56	3.50	3.56	3.44	3.38	3.38	3.50	3.38
lower girt	Depth	7.88	8.00	8.00	8.00	8.13	8.13	8.13	8.06	8.13	8.06	8.19	8.25	8.25	8.13	8.25
6" below	Meas.	3.88	3.75	3.75	3.69	3.63	3.56	3.50	3.50	3.50	3.38	3.50	3.44	3.50	3.63	3.50
lower girt	Depth	7.75	7.88	7.88	7.94	8.00	8.06	8.13	8.13	8.13	8.25	8.13	8.19	8.13	8.00	8.13
18" below	Meas.	3.75	3.63	3.25	3.19	3.08	2.94	2.94	2.94	3.00	3.19	2.94	3.00	3.19	3.50	3.31
lower girt	Depth	7.88	8.00	8.38	8.44	8.54	8.69	8.69	8.69	8.63	8.44	8.69	8.63	8.44	8.13	8.31

Test Number: 2011-33 Page 4 of 15

Specimen surface measurements.

Description	Average deg C	Average deg F
Test Specimen Surface (Climate) # 11	10.63	51.13
Test Specimen Surface (Climate) # 12	10.74	51.33
Test Specimen Surface (Climate) #13	10.90	51.62
Test Specimen Surface (Climate) # 14	11.70	53.07
Test Specimen Surface (Climate) # 15	11.78	53.20
Test Specimen Surface (Climate) # 16	10.53	50.96
Test Specimen Surface (Climate) # 17	11.66	52.99
Test Specimen Surface (Climate) # 18	12.19	53.93
Test Specimen Surface (Climate) # 19	13.72	56.69
Test Specimen Surface (Climate) # 20	10.57	51.03
Test Specimen Surface (Climate) # 21	10.46	50.82
Test Specimen Surface (Climate) # 22	10.70	51.27
Test Specimen Surface (Climate) # 23	10.95	51.71
Test Specimen Surface (Climate) # 24	12.12	53.81
Test Specimen Surface (Climate) # 25	13.27	55.88
Test Specimen Surface (Climate) # 26	10.89	51.61
Test Specimen Surface (Climate) # 27	10.97	51.75
Test Specimen Surface (Climate) # 28	10.19	50.34
Test Specimen Surface (Climate) # 29	10.31	50.56
Test Specimen Surface (Climate) # 30	10.28	50.50
Test Specimen Surface (Meter) # 49	37.38	99.28
Test Specimen Surface (Meter) # 50	37.36	99.25
Test Specimen Surface (Meter) # 51	37.46	99.43
Test Specimen Surface (Meter) # 52	36.79	98.22
Test Specimen Surface (Meter) # 53	36.64	97.94
Test Specimen Surface (Meter) # 54	36.98	98.57
Test Specimen Surface (Meter # 55	31.99	89.58
Test Specimen Surface (Meter) # 56	32.16	89.88
Test Specimen Surface (Meter) # 57	36.90	98.43
Test Specimen Surface (Meter) # 58	36.89	98.41
Test Specimen Surface (Meter) # 59	36.93	98.47
Test Specimen Surface (Meter) # 60	36.85	98.33
Test Specimen Surface (Meter) # 61	36.63	97.94
Test Specimen Surface (Meter) # 62	36.44	97.59
Test Specimen Surface (Meter) # 63	35.27	95.48
Test Specimen Surface (Meter) # 64	31.17	88.11
Test Specimen Surface (Meter) # 65	31.18	88.12
Test Specimen Surface (Meter) # 66	36.55	97.78
Test Specimen Surface (Meter) # 67	36.59	97.87
Test Specimen Surface (Meter) # 68	36.67	98.00

Test Number: 2011-33 $Test \ Results \ ID: \ Standard \ Results - 06/15/2011 \ 10:39 \\ \text{Butter Manufacturing}^{\text{\tiny{M}}} \ \text{is a division of BlueScope Buildings North America, Inc.}$

Research Center 13500 Botts Road Grandview, MO 64030-2897 Phone 816-968-5700

Accreditations:

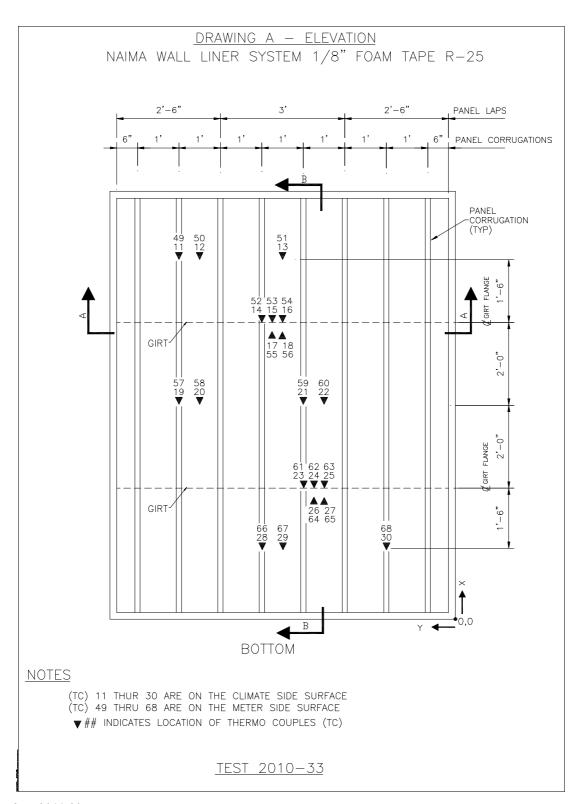
Test Specification	Description	Accredited By
ASTM C 1363-05	ASTM C 1363-05	International Accreditation
		Service, Inc.

Latest Apparatus Calibration Date: August 2010

Butler Manufacturing will retain a copy of this test report for a minimum of four years. This report is the property of the Test Sponsor as mentioned in this test report and relates only to the products and assemblies as tested. This report may not be reproduced, except in full, without the prior written consent of Butler Manufacturing. The results obtained are tested values. This report is not an endorsement about the tested products and does not constitute a certification of the products tested.

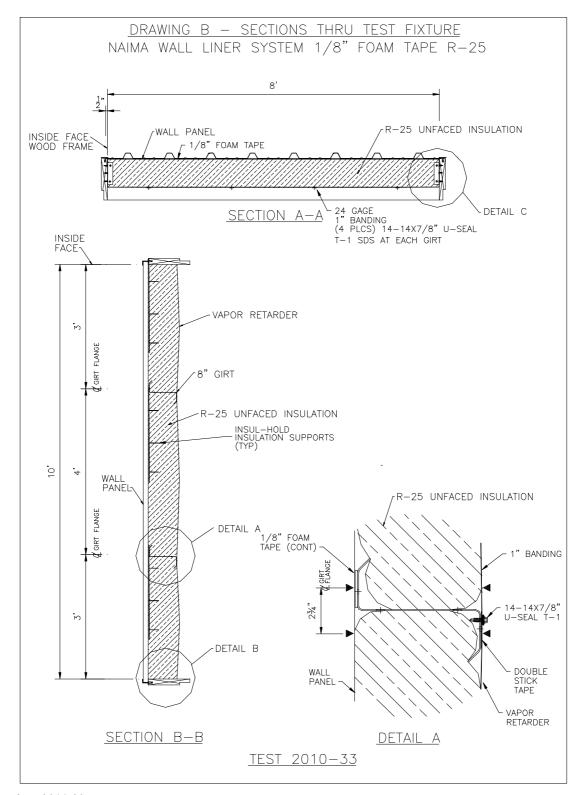
For Butler Manufacturing

Mark J. Henry

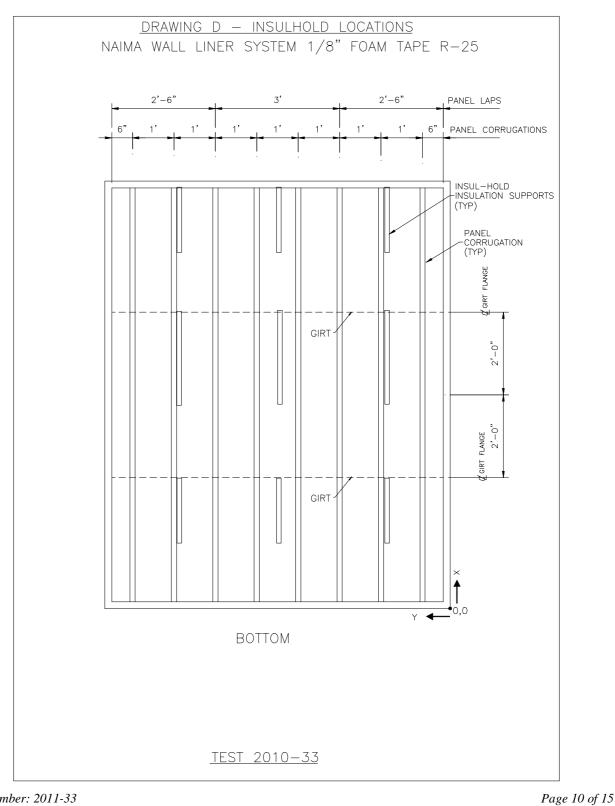

Senior Research Engineer

Attachments:

Revision Log


Test Number: 2011-33 Page 6 of 15

Research Center 13500 Botts Road Grandview, M0 64030-2897 Phone 816-968-5700


Test Number: 2011-33 Test Results ID: Standard Results-06/15/2011 10:39

DRAWING C - TEST FIXTURE DETAILS NAIMA WALL LINER SYSTEM 1/8" FOAM TAPE R-25UN-FACED R-25 INSULATION VAPOR RETARDER WALL PANEL PANEL FLAT FLUSH WITH TOP OF WOOD FRAME-WOOD STRIP FOAM CLOSURE WOOD FRAME 1 5/8" x 11 5/8" NYLON ARROW CLIP 8" DETAIL B FOAM TAPE--WALL PANEL TAPE OVER NYLON ARROW CLIP 1/4x14-1 1/4" CARBON SDS @ 12" OC-Ф 8" GIRT Ф FIBERGLASS CLIP-~WOOD FRAME DETAIL C (INSULATION NOT SHOWN) TEST 2010-33

Test Number: 2011-33 Test Results ID: Standard Results-06/15/2011 10:39

Research Center 13500 Botts Road Grandview, MO 64030-2897 Phone 816-968-5700

Test Number: 2011-33 Test Results ID: Standard Results-06/15/2011 10:39
Butler Manufacturing™ is a division of BlueScope Buildings North America, Inc. Page 11 of 15

Research Center 13500 Botts Road Grandview, MO 64030-2897 Phone 816-968-5700

Butler Manufacturing Research Center

13500 Botts Road Grandview, MO 64030-2897 Phone 816-968-5700

Test Number: 2011-33
Test Results ID: Standard Results-06/15/2011 10:39
Butler Manufacturing™ is a division of BlueScope Buildings North America, Inc.

www.butlermfg.com

Butler Manufacturing

Research Center 13500 Botts Road Grandview, MO 64030-2897 Phone 816-968-5700

Research Center 13500 Botts Road Grandview, M0 64030-2897 Phone 816-968-5700

 $Test\ Number:\ 2011-33$ $Test\ Results\ ID:\ Standard\ Results-06/15/2011\ 10:39$ Butler Manufacturing is a division of BlueScope Buildings North America, Inc.